a
DAQ Configuration Management Plan

Table of Contents

21
Introduction


21.1
Revision History


21.2
Purpose


31.3
Scope


31.4
Definitions, Acronyms & Abbreviations


91.5
References


102
SCM/HCM Management at Plantation Productions, Inc.


113
SCM/HCM Activities


113.1
Configuration Identification


123.2
Initial Baseline


123.3
Changing Configurations


143.4
Configuration Status


143.5
Configuration Audits and Reviews


143.6
Interface Control


143.7
Subcontractor/Vender Control


153.8
SCM/HCM Schedules and Milestones


153.9
SCM/HCM Resources


153.10
SCM/HCM Plan Maintenance




Note:  All trademarks and registered trademarks contained herein are the property of their respective owners.  Plantation Productions, Inc., does not claim ownership of any trademarks within this document other than those specifically owned by Plantation Productions, Inc.

Note: TRIGA™ is a registered trademark of General Atomics, Inc.

1 Introduction
The Plantation Productions, Inc., DAQ System is a set of hardware circuit boards and firmware that provide data acquisition and control functionality. Although originally intended for TRIGA™ research reactor data acquisition and control the DAQ System is sufficiently generic that it can be use for arbitrary systems requiring analog and digital I/O.
1.1 Revision History

Revision 1.0: Randall Hyde Sept 25, 2017

1.2 Purpose

This document includes the Configuration Management Plan for the Plantation Productions' Open Source/Open Hardware digital data acquisition system. The purpose of this software test plan is to describe how to maintain different configurations of the Plantation Productions’ Open Source/Open Hardware DAQ (data acquisition and control) hardware and software.

This plan covers both HCM (Hardware Configuration Management) and SCM (Software Configuration Management) for the following products:

· DAQ_IF: DAQ Interface board

· PPDIO96: 96-bit digital I/O board

· PPAIO-16/4: 16-input, 4-output analog I/O board

· PPRelay-12: 12-output mechanical relay board (+4 TTL outputs)

· PPSSR-16: 16-output solid-state relay board

· PPRlyio-12: 12-channel digital I/O board with relays

· PPOpto-12: 12-channel optical isolator for digital inputs

· PPAC4: 4-channel analog conditioning module

· PPAC420: 8-channel 4-20mA analog signal conditioning

· PPDO-48: 48-channel digital output module
· Firmware for the Netburner MOD54415 module (that controls the above boards)

· Test applets for various hardware modules

· Application automated test suite for the firmware
The DAQ System documentation, software, and hardware is covered under the Creative Commons (CC BY 4.0) found here:

https://creativecommons.org/licenses/by/4.0/
For the purposes of attribution, all work must be attributed to "Randall Hyde, Plantation Productions, Inc., Copyright 2017"

This document has been developed per the guidance provided in IEEE Std 828-1998, IEEE Standard for Software Test Documentation.
1.3 Scope
This document covers the configuration management of the Open Source/Open Hardware products in the DAQ System product line created by Plantation Productions, Inc. It covers the configuration of the basic hardware and software modules created by Plantation Productions, Inc., as stand-alone objects. Creation of implementation-dependent (site-dependent) combinations of these products is beyond the scope of this document.

1.4 Definitions, Acronyms & Abbreviations
Note: many of these definitions were taken directly from IEEE Std 829-2008.

	Acceptance Testing
	 (A) Testing conducted to establish whether a system satisfies its acceptance
criteria and to enable the customer to determine whether to accept the system.  (B) Formal testing conducted

to enable a user, customer, or other authorized entity to determine whether to accept a system or

component. This is analogous to qualification testing in IEEE/EIA Std 12207.0-1996 [B21]. Another

commonly used synonym is validation testing.



	Activity
	 An element of work performed during the implementation of a process. An activity normally
has an expected duration, cost, and resource requirements. Activities are often subdivided into tasks.



	Address
	 To deal with, to take into consideration; (specifically) to decide whether and when a defined documentation topic is to be included, either directly or by reference to another document. Make a decision as to whether an item is to be recorded prior to the test execution (in a tool or not in a tool), recorded during the test execution, recorded post-test execution, not recorded (addressed by the process), or excluded.


	Anomaly
	 Anything observed in the documentation or operation of software or system that deviates
from expectations based on previously verified software products, reference documents, or other sources of indicative behavior. (adopted from IEEE Std 610.12-1990 [B3])



	Checkout
	 Testing conducted in the operational or support environment to ensure that a software product performs as required after installation. (adopted from IEEE Std 610.12-1990 [B3])


	Component
	One of the parts that make up a system.  A component may be hardware or software and may be subdivided into other components. Note: The terms “module,” “component,” and “unit” are often used interchangeably or defined to be sub elements of one another in different ways depending upon the context. The relationship of these terms is not yet standardized.

For this plan, a component is defined as the combination of units and modules that are included in the source files required for a major software task.
 (adopted from IEEE Std 610.12-1990 [B3])


	Component Integration Testing
	 Testing of groups of related components.


	Component Testing
	 Testing of individual hardware or software components. (adopted from IEEE Std 610.12-1990 [B3])



	Control Point
	A project agreed on point in time or times when specified agreements or controls are applied to the software configuration items being developed, e.g., an approved baseline or release of a specified document/code. 

	Criticality
	 The degree of impact that a requirement, module, error, fault, failure, or other characteristic has on the development or operation of a system. (adopted from IEEE Std 610.12-1990 [B3])



	Development Testing
	 Testing conducted to establish whether a new software product or softwarebased system (or components of it) satisfies its criteria. The criteria will vary based on the level of test being performed.



	Document
	 (A) A medium, and the information recorded on it, that generally has permanence and can be read by a person or a machine. Examples in software engineering include project plans, specifications, test plans, and user manuals.  (B) To create a document as in (A). (adopted from IEEE Std 610.12-1990 [B3])



	Documentation
	 (A) A collection of documents on a given subject.  (B) Any written or pictorial information describing, defining, specifying, reporting, or certifying activities, requirements, procedures, or results.  (C) The process of generating or revising a document.  (D) The management of documents, including identification, acquisition, processing, storage, and dissemination. (adopted from IEEE Std 610.12-1990 [B3])



	Feature
	 A distinguishing characteristic of a system item (includes both functional and nonfunctional attributes such as performance and reusability).



	Functional Testing
	(1) Testing that ignores the internal mechanism of a system or component and focuses solely on the outputs generated in response to selected inputs and execution conditions.  (2) Testing conducted to evaluate the compliance of a system or component with specified functional requirements.  [IEEE Std 610.12-1990]

	HCM
	Hardware Configuration Management

	Integration Testing
	 Testing in which software components, hardware components, or both are combined and tested to evaluate the interaction among them. This term is commonly used for both the integration of components and the integration of entire systems. (adopted from IEEE Std 610.12-1990 [B3])



	Integrity Level
	 (A) The degree to which software complies or must comply with a set of stakeholder-selected software and/or software-based system characteristics (e.g., software complexity, risk assessment, safety level, security level, desired performance, reliability, or cost), defined to reflect the importance of the software to its stakeholders.  (B) A symbolic value representing this degree of compliance within an integrity level scheme.



	Integrity Level Scheme
	 A set of system characteristics (such as complexity, risk, safety level, security level, desired performance, reliability, and/or cost) selected as important to stakeholders, and arranged into discrete levels of performance or compliance (integrity levels), to help define the level of quality control to be applied in developing and/or delivering the software.



	Interface Requirements Specification (IRS)
	 Documentation that specifies requirements for interfaces between or among systems or components. These requirements include constraints on formats and timing. This may be included as a part of the Software Requirements Specification. (adopted from IEEE Std 610.12-1990 [B3] and IEEE Std 1012TM -2004 [B10])



	Life Cycle Processes
	 A set of interrelated activities that result in the development or assessment of software products. Each activity consists of tasks. The life cycle processes may overlap one another.



	Minimum Tasks
	 Those tasks required for the integrity level assigned to the software to be tested.


	Normal Operating Condition
	Condition of the console when the console is operational and no unexplained statuses are present

	Operational
	 (A) Pertaining to a system or component that is ready for use in its intended environment.  (B) Pertaining to a system or component that is installed in its intended environment.  (C) Pertaining to the environment in which a system or component is intended to be used. (adopted from IEEE Std 610.12-1990 [B3])



	Operational Testing
	 Testing conducted to evaluate a system or component in its operational environment. (adopted from IEEE Std 610.12-1990 [B3])



	Optional Tasks
	 Those tasks that may be added to the minimum testing tasks to address specific requirements. (adopted from The Authoritative Dictionary of IEEE Standards Terms  [B2])



	Process
	 A set of interrelated activities, which transform inputs into outputs.


	Qualification Testing
	 Conducted to determine whether a system or component is suitable for operational use. See also: acceptance testing ; development testing ; operational testing.



	Quality
	 (A) The degree to which a system, component, or process meets specified requirements.  (B) The degree to which a system, component, or process meets customer or user needs or expectations. (adopted from IEEE Std 610.12-1990 [B3])



	Release
	The formal notification and distribution of an approved version. 

	Regression Testing
	Selective retesting of a system or component to verify that modifications have not caused unintended effects and that the system or component still complies with its specified requirements.  [IEEE Std 610.12-1990]

	Request for Proposal (RFP)
	 A document used by the acquirer as the means to announce its intention to potential bidders to acquire a specified system, software product, or software service. (adopted from IEEE Std 1074-2006 [B17])



	Required Inputs
	 The set of items necessary to perform the minimum testing tasks mandated within any life cycle activity. (adopted from The Authoritative Dictionary of IEEE Standards Terms  [B2])



	Required Outputs
	 The set of items produced as a result of performing the minimum testing tasks mandated within any life cycle activity.



	Reusable Product
	 A product developed for one use but having other uses, or one developed specifically to be usable on multiple projects or in multiple roles on one project. Examples include, but are not limited to, commercial off-the-shelf (COTS) products, acquirer-furnished products, products in reuse libraries, and preexisting developer products. Each use may include all or part of the product and may involve its modification. This term can be applied to any software or system product (for example, requirements or architectures), not just to software or system itself. (adopted from The Authoritative Dictionary of IEEE Standards Terms  [B2])


	Risk
	The combination of the probability of occurrence and the consequences of a given future undesirable event. Risk can be associated with software and/or systems. (B)  The combination of the probability of an abnormal event or failure and the consequence(s) of that event or failure to a system’s components, operators, users, or environment. (adopted from The Authoritative Dictionary of IEEE Standards Terms  [B2])



	Scenario
	 (A) A description of a series of events that may occur concurrently or sequentially.  (B) An account or synopsis of a projected course of events or actions. (adopted from IEEE Std 1362TM-1998 [B20]) (C) Commonly used for groups of test cases; synonyms are script, set, or suite.


	SCM
	Software Configuration Management

	Software
	 Computer programs, procedures, and possibly associated documentation and data pertaining to the operation of a computer system. (adopted from IEEE Std 610.12-1990 [B3])



	Software-Based Systems
	 Computer systems that are controlled by software.


	Software Design Description (SDD)
	 A representation of software created to facilitate analysis, planning, implementation, and decision making. The software design description is used as a medium for communicating software design information, and it may be thought of as a blueprint or model of the system. (adopted from The Authoritative Dictionary of IEEE Standards Terms  [B2])



	Software Requirements Specification (SRS)
	 Documentation of the essential requirements (functions, performance, design constraints, and attributes) of the software and its external interfaces. (adopted from IEEE Std 610.12-1990 [B3])



	STC
	Software Test Case

	STP
	Software Test Procedure

	Systems Integration Testing
	 Testing conducted on multiple complete, integrated systems to evaluate their ability to communicate successfully with each other and to meet the overall integrated systems’ specified requirements.



	SyRS
	System Requirements Specification

	System Testing
	 Testing conducted on a complete, integrated system to evaluate the system’s compliance with its specified requirements. (adopted from IEEE Std 610.12-1990 [B3])



	Task
	 (A) The smallest unit of work subject to management accountability. A task is a well-defined work assignment for one or more project members. Related tasks are usually grouped to form activities. (adopted from IEEE Std 1074-2006 [B17]). (B) In Micro-C/OS a task is synonymous with a thread of execution.


	Test
	 (A) A set of one or more test cases.  (B) A set of one or more test procedures.  (C) A set of one or more test cases and procedures. (adopted from IEEE Std 610.12-1990 [B3]  (D) The activity of executing (A), (B), and/or (C).



	Test Approach
	 A particular method that will be employed to pick the particular test case values. This may vary in specificity from very general (e.g., black box or white box) to very specific (e.g., minimum and maximum boundary values).



	Test Case
	 (A) A set of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement.  (B) Documentation specifying inputs, predicted results, and a set of execution conditions for a test item. (adopted from IEEE Std 610.12-1990 [B2])



	Test Class
	 A designated grouping of test cases.


	Test Design
	Documentation specifying the details of the test approach for a software feature or combination of software features and identifying the associated tests (commonly including the organization of the tests into groups). (adopted from IEEE Std 610.12-1990 [B2])



	Test Effort
	 The activity of performing one or more testing tasks.


	Test Level
	 A separate test effort that has its own documentation and resources (e.g., component, component integration, system, and acceptance).



	Testing
	(1) The process of operating a system or component under specified conditions, observing or recording the results, and making an evaluation of some aspect of the system or component. (2) The process of analyzing a software item to detect the differences between existing and required conditions (that is, bugs) and to evaluate the features of the software items.  [IEEE Std 610.12-1990].

	Testing Task Iteration
	 A task that is re-performed during maintenance after having been originally performed during development.



	Test Item
	 A software or system item that is an object of testing.


	Test Plan
	 (A) A document describing the scope, approach, resources, and schedule of intended test activities. It identifies test items, the features to be tested, the testing tasks, who will do each task, and any risks requiring contingency planning.  (B) A document that describes the technical and management approach to be followed for testing a system or component. Typical contents identify the items to be tested, tasks to be performed, responsibilities, schedules, and required resources for the testing activity. (adopted from IEEE Std 610.12-1990 [B2]) The document may be a Master Test Plan or a Level Test Plan.



	Test Procedure
	 (A) Detailed instructions for the setup, execution, and evaluation of results for a given test case.  (B) A document containing a set of associated instructions as in (A).  (C) Documentation that specifies a sequence of actions for the execution of a test. (adopted from IEEE Std 982.1TM-2005 [B7])



	Testware
	 All products produced by the testing effort, e.g., documentation and data.


	User Documentation
	 All documentation specifically written for users of a system, such as online help text and error messages, compact disc or hard copy system description, technical support manual, user manual, all system training materials, and release notes for patches and updates.



	Validation
	 (A) The process of evaluating a system or component during or at the end of the development process to determine whether it satisfies specified requirements. (adopted from IEEE Std 610.12-1990 [B3])  (B) The process of providing evidence that the software and its associated products satisfy system requirements allocated to software at the end of each life cycle activity, solve the right problem (e.g., correctly model physical laws, implement business rules, or use the proper system assumptions), and satisfy intended use and user needs.



	Verification
	 (A) The process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase. (adopted from IEEE Std 610.12-1990 [B3])  (B) The process of providing objective evidence that the software and its associated products comply with requirements (e.g., for correctness, completeness, consistency, and accuracy) for all life cycle activities during each life cycle process (acquisition, supply, development, operation, and maintenance), satisfy standards, practices, and conventions during life cycle processes, and successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life cycle activities (e.g., building the software correctly).




The terms and definitions from IEEE Std 610.12-1990, not explicitly present here, are incorporated herein by reference.

1.5 References
NOTE:
Listing of a document in this references section means that the reference was used in the development of this document and does not mean that this document or testing comply with that reference.
1.5.1 Government Regulations, Standards and Publications

	Issued By
	Document Identity
	Title

	NRC
	RG 1.170
	Software Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants


1.5.2 Industry Standards

	Issued By
	Document Identity
	Title

	IEEE
	IEEE Std 610.12-1990
	IEEE Glossary of Software Engineering Terminology

	IEEE
	IEEE Std 828-1998
	IEEE Standard for Software Configuration Management Plans

	IEEE
	IEEE Std 829-1998
	IEEE Standard for Software Test Documentation

	IEEE
	IEEE Std 829-2008
	IEEE Standard for Software Test Documentation

	IEEE
	IEEE Std 1008-1987
	IEEE Standard for Software Unit Testing

	IEEE
	IEEE Std 1012-2004
	IEEE Standard for Software Verification and Validation


2 SCM/HCM Management at Plantation Productions, Inc.
Plantation Productions, Inc., is solely responsible for administering the configuration management policies stated within this document. Should the DAQ System product line be “branched” to support a specific data acquisition topology (that is, a collection of DAQ System components configured for a specific site), the individuals managing that branch are responsible for their own configuration management plan.

Note: Plantation Productions, Inc., is a small shop with a single engineer responsible for design, development, and testing of the DAQ System. As having a single engineer taking responsibility for all these activities is antithical to normal software engineering principles (as outlined in the IEEE standards and recommendations), it is important that any site wishing to use the DAQ System and configure it for their own purposes provide appropriate engineering and quality assurance resources to fully expand the review and testing of the DAQ System to meet the IEEE guidelines.
When branching the DAQ System for implementation at a specific site, Plantation Productions, Inc., recommends following the SCM management guidelines recommended by IEEE 828-1998 (or a later version of this document). 
3 SCM/HCM Activities
DAQ System SCM and HCM activities include the following:

· Identifying products to control under configuration management

· Controlling the configuration of identified products

· Status accounting of managed items
· Configuration audits and reviews

3.1 Configuration Identification

The DAQ System contains several items that need to be controlled under configuration management. These are the following:

3.1.1 QA Documentation

· DAQ SQAP.doc: Software Quality Assurance Plan

· DAQ ConfigMgmt.doc (this document): configuration management plan

· DAQ TestPlan.doc: test plan document

· DAQ SyRS.doc: DAQ System Requirements (functional requirements) documentation

· DAQ HRS.doc: DAQ Hardware Requirements documentation

· DAQ HDD.doc: DAQ Hardware Design Description documentation

· DAQ HI.doc: DAQ Hardware Inspection/Review documentation

· DAQ HTC.doc: DAQ Hardware Test Cases documentation

· DAQ HTP.doc: DAQ Hardware Test Procedures documentation

· DAQ SRS.doc: DAQ Software Requirements Specification documentation

· DAQ SR.doc: DAQ Software Review documentation

· DAQ SDD.doc: DAQ Software Design Description documentation

· DAQ STC.doc: DAQ Software Test Cases documentation

· DAQ STP.doc: DAQ Software Test Procedures documentation

· DAQ_traceabilityMTX.xlsx: DAQ Traceability Matrix

· DAQ Pgm.doc: DAQ System Programmer’s Manual documentation

3.1.2 Circuit Board Schematics and Board Layout Files

Note: each of the files is a folder containing the Eagle schematic and board layout files for the PCB.
· DAQIF: Eagle files for DAQ IF board

· PPDIO96: Eagle files for the PPDIO96 board

· PPAIO16-4: Eagle files for the PPAIO-16/4 board

· PPRelay12: Eagle files for the PPRelay-12 board

· PPSSR16: Eagle files for the PPSSR-16 board

· PPDO48: Eagle files for the PPDO-48 board

· PPRlyio: Eagle files for the PPRlyio-12 board

· PPAC4: Eagle files for the PPAC4 board

· PPAC420: Eagle files for the PPAC420 board

· PPOpto12: Eagle files for the PPOpto-12 board

· PPBridge12: Eagle files for the PPBridge-12 board

· PPBreakin: Eagle files for the PPBreakin board

· PPBreakout: Eagle files for the PPBreakout board

· LevelConveter: Eagle files for the TXB0108 replacement board for the DAQ system

· TestFixtureBridge: Eagle files for the analog mux PCB for the DAQ System test fixture

· Test Fixture: Eagle files for the test fixture schematic (no PCB)

· DAQIF_Test: Eagle files for the DAQ IF test fixture schematic (no PCB)

3.1.3 Software Source Files

The following source files will be maintained under SCM for the Plantation Productions’ DAQ System:

3.1.3.1 Hardware Test Programs

· DAQIF_Test.ino: Teensy 3.2 program used to test DAQ IF board functionality

· PPAIO_Calibration.ino: Teensy 3.2 program used to calibrate DACs on PPAIO-16/4 board

· PPAIO_Test.ino: Teensy 3.2 program used to test DAC/ADC functionality

· PPAIO2_Test.ino: Teensy 3.2 program used to test DAC/ADC functionality

· PPDIO_Test.ino: Teensy 3.2 program used to test PPDIO96 functionality

· PPDO48_Test.ino: Teensy 3.2 program used to test PPDO48 functionality

· PPRelay_Test.ino: Teensy 3.2 program used to test PPRelay-12 functionality

· SSR_Test.ino: Teensy 3.2 program used to test PPSSR-16 functionality

3.1.3.2 Software and Software Test Suite

· TestSuite: folder containing C++ and Swift files for the DAQ System automated test suite (used to test firmware functionality).

· DAQSoftware: folder containing C++ source code for the Netburner firmware

3.2 Initial Baseline
Configuration management begins upon achieving the initial baseline. For the Plantation Productions’ DAQ System, the initial baseline is that point in the development process upon first branching the project for a specific site (this turns out to be the DAQ System implementation at Dow Chemical Corp for their TRIGA™ reactor). Prior to the initial baseline the system does not fall under SCM/HCM. After creating the first site-specific branch, all system changes must fall under SCM/HCM.

The decision to begin SCM/HCM with the first branch is an economic one. Maintaining the documentation for an SCM/HCM-controlled system is time-consuming and expensive and there is very little need for SCM during this process. However, once the first DAQ System is delivered, SCM/HCM is vitally important in order to track changes made to the system across various site implementations (which could impact older sites).

3.3 Changing Configurations

Once the initial baseline is achieved, changing the products (hardware or software) can have a detrimental impact on existing installed systems. For example, changing the behavior of a software command could cause an older system to malfunction should someone install that newer software on the older hardware. Therefore, it is very important to avoid making changes to the current baseline system without first reviewing the impact this might have on older systems.

Plantation Productions, Inc., shall maintain its own set of baseline configurations and branches on the Plantation Productions’ web site. Other sites may feel free to create their own branches of the system but should maintain their own, local, SCM and HCM policies and procedures.

3.3.1 Naming Configurations

Plantation Productions shall use a numeric version number scheme to identify baseline configurations. Each individual configuration item (see section 3.1) shall have its own version number (of the form “major.minor”, e.g., “1.2”). A new baseline configuration shall have a version number plus a date associated with it.

Branches from the baseline shall have the following information in their name:

· The name of the branch (e.g., “Dow Chemical”)

· The date of the latest revision of that branch

· The original baseline version number from which the branch was taken

· A version number (of the form “major.minor”) associated with the current revision of the branch

Plantation Productions, Inc., shall use a file folder to maintain baseline and branch files. The folder’s name shall contain the information this section describes. A baseline file folder shall have a name of the form: “DAQ_date_version” and a branch folder shall have a name of the form “DAQ_version_branch_date_version” (where “branch” is the name of the branch).
3.3.2 Source Code/File Control

Ideally, all HCM/SCM files should be kept in a source-code control (SCC) database.  Unfortunately, there are a wide variety of SCC systems (most of which are incompatible with one another) out in the world and everyone has their own favorite system. To avoid conflicts and to make it easy to distribute code, Plantation Productions, Inc., shall simply put (compressed) file folders with appropriate names on its web site. Interested individuals can download the files and put them into their favorite source code control system. Note that this does not preclude Plantation Productions from using a SCC system in-house, this is only for file distribution. This almost trivializes the issues of backups (maintained by the web site provider and Plantation Productions, Inc.), distribution, and control.

Of course, once an outside entity creates a branch of the system, it is in their best interests to maintain their own internal SCC system; that, however, is beyond the scope of this document.

3.3.3 Configuration Control

Three main activities result in a change to the current configuration baseline:
1. A branch of the baseline to a site-specific implementation

2. A change in the current baseline because of a defect correction

3. A change in the current baseline because of an enhancement to the system

Item (1) occurs whenever Plantation Productions, Inc., creates a new baseline for a customer. As a general rule anyone can create a branch of the DAQ system; however, Plantation Productions, Inc. does not normally accept such branches as part of the DAQ System on the Plantation Productions’ web site – normally the organization creating the branch would keep that branch to themselves.

Item (2) occurs whenever Plantation Productions discovers a defect in the DAQ System (or someone reports a defect to Plantation Productions, Inc.).  In such an event Plantation Productions corrects the defect, tests the correction, and creates a new baseline with the correction. Whether the defect gets folded back into branches not based on the current baseline gets determined view reviews of the older branches.

Item (3) occurs whenever Plantation Productions, Inc., adds new functionality to the system. This could be new software commands or new hardware (along with new software to control the new hardware). Generally, such changes do not get folded back into old branches because those systems don’t use the new hardware (obviously) and probably won’t make use of any new software commands added to the DAQ System.

Plantation Productions, Inc., shall be solely responsible for determining the need for changes and approving or disapproving those changes to the DAQ System (of course, if someone creates a branch, they are free to do as they wish with that branch). Plantation Productions, Inc. shall also be responsible for implementing, verifying, and releasing any changes to the DAQ System.
3.4 Configuration Status

The current status of the DAQ System configuration shall be maintained on the Plantation Productions, Inc., website (http://www.plantation-productions.com/Electronics/DAQ/DAQ.html).
3.5 Configuration Audits and Reviews
Because Plantation Productions, Inc., is a very small shop, configuration audits are the responsibility of the organization that branches the system for their own site-specific purposes. In the event Plantation Productions, Inc., performs the branch for a customer, Plantation Productions, Inc., shall arrange a configuration audit with that customer prior to deployment.

3.6 Interface Control

The Plantation Productions’ DAQ System exposes a programmatic API (application programming interface) via text commands across the Ethernet, USB, and RS-232 serial ports on the Netburner MOD54415 CPU module. This API is part of the firmware that is under configuration management. The operation of the application software that uses this API (e.g., TRIGA™ digital console control software) is beyond the scope of this document.

3.7 Subcontractor/Vender Control

The Plantation Productions’ DAQ System uses several COTS (Commercially Off-The-Shelf) components. Specifically, there are several “breakout boards” from Adafruit (https://www.adafruit.com) and Sparkfun (https://www.sparkfun.com); these boards take Surface-Mount Technology (SMT or SMD) devices and put them on a tiny circuit board with pins (on 0.1” centers) to make them as easy to use as through-hole devices. These breakout boards are all open-source/open hardware (including PCB gerber files you can use to create your own boards if the manufacturer declares them obsolete and stops making them). The software drivers for these boards are also open-source (though the Plantation Productions’ DAQ source code tends not to use their library code, opting to program these devices directly).
The DAQ System also uses the Netburner MOD54415 CPU module and evaluation board. This is a proprietary (not open hardware/open source) system that is subject to obsolescence. Fortunately, Netburner has a long history of replacing Netburner modules with ones that are pin compatible with older versions, so unless the company disappears, it’s likely you can get a new board that will still work. Should the company disappear, it’s easy enough to adopt the DAQ IF board to use a different CPU module (stock design supports Teensy 3.2 and Raspberry PI single-board computers, for example). The Netburner MOD54415 module runs a real-time OS (µC/OS) that is SOUP (Software of Unknown Provinence) – a product whose source code is available (though it probably isn’t what most people consider “open source” software and the specific implementation on the Netburner does not have the full source code available). Newer versions of this OS (µC/OS II) are even safety-certified; but this doesn’t apply to the version running on the Netburner.  This creates some issues for using the Netburner MOD54415 in a system that must be reliable for a long period of time (e.g., 20 years, or more, as is typical for a TRIGA™ research reactor). The typical COTS solution in this case is to buy several spare Netburner MOD54415 boards, program them with the firmware, and save them in a sealed container for the day you need replacement parts 10 years down the road. By purchasing the spares at the same time you purchase the original parts, you’re guaranteed that you get a MOD54415 board that is identical to the original installed in your DAQ System (MOD54415 boards have gone through several revisions, some with changes that are incompatible with older applications).
3.8 SCM/HCM Schedules and Milestones

As noted earlier, the DAQ System SCM and HCM processes will begin with the first branch from the baseline. 

3.9 SCM/HCM Resources

Plantation Productions, Inc., shall make every attempt to keep DAQ System SCM and HCM procedures manual. This avoids the use of tools that may not be available to, or acceptable by, other organizations.
3.10 SCM/HCM Plan Maintenance

Plantation Productions, Inc., shall take responsibility for managing this plan for the Plantation Productions’ baseline and branches. This plan will be updated to reflect new items added to (or removed from) the DAQ System. Changes to this plan will be posted to the Plantation Productions, Inc., website with an appropriate notice on the DAQ page (http://www.plantation-productions.com/Electronics/DAQ/DAQ.html).

� If a branch is generic enough and the organization creating the branch can convince Plantation Productions, Inc., to accept the branch, putting it on the Planation Productions’ web site is possible. This will probably not be a common activity, however.





	
	PPDAQ

Plantation Productions' Data Acquisition System
	PPDAQ-CM
Page 1



